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INVESTIGATION OF METHODS FOR PREDICTING FLOW IN THE
SHOCK IAYER OVER BODIES AT SMALL ANGLES OF ATTACK
By William F. Gallo and John V. Rakich

Ames Research Center

SUMMARY

Two theoretical methods for predicting the flow field about axisymmetric
bodies at small angles of attack are studied. The methods, the linearized
characteristics method and the equivalent body method, are compared with
experimental data for a blunted cone, an ogive cylinder, and an X-15 airplane
model. Bach theory was found superior in certain flow regions, neither being
superior in all cases.

The linearized characteristic theory was found to be useful for pre-
dicting the flow fields about bodies of higher fineness ratio, such as an
ogive cylinder and the X-15 at small angles of attack. Of particular
interest was its ability to provide circumferential varilations of certain flow
quantities, especially flow angle, for bodies at angle of attack. Pressures
were not predicted as well as flow angle and Mach number, however, for the
limited cases studied. In regions dominated by blunt nose effects the
linearized characteristic method did not agree well with experiment although
a modification to the method improved the agreement close to the nose (less
than 4 nose radii). The equivalent body method agreed well with experiment
in this nose region and in regions further downstream dominated by the effects
of the blunt nose (about 16 radii). The equivalent body method, however, is
restricted in the present report to the plane of flow symmetry.

Additional theoretical predictions of parameters of interest to the X-15
flight test program are included. The parameters investigated are local Mach
number, flow angle, and pitot pressure for three different free-stream Mach
nunbers and at angles of attack up to 10°.

INTRODUCTION

In design studies of hypersonic aircraft with airbreathing propulsion
systems, the engine inlet is often well aft on the body. An inlet in this
position would generally be completely in the shock layer, where the flow
field is nonuniform, particularly at angle of attack. Theoretical predictions
of these shock-layer flow fields are important in assessing the operating
environment and in designing inlets.

Although the most accurate and complete method of calculating angle-
of-attack effects in the shock layer would be to utilize a truly three-
dimensional method of characteristics solution (refs. 1-3), it is often



necessary to use a simplified approach. This study, therefore, investigates
two simplified methods, a linearized characteristics method and an equivalent
body method, to predict the flow in the shock layer over bodies at angle of
attack.

There are standard computer programs for applying method of character-
istics to axisymmetric bodies at zero angle of attack (e.g., refs. 4,5). The
linearized method of characteristics (refs. 6, 7) predicts flow at small angles
of attack by perturbing the basic method of characteristics for axisymmetric
flow and neglecting terms proportional to the square of angle of attack and
higher. Another method, termed for purposes of discussion an equivalent body
method, also makes use of the method of characteristics for axisymmetric
flow. This method includes some of the nonlinear terms neglected by the
linearized characteristics method, but completely neglects the crossflow
velocity which is a first-order term. Both of these methods have previously
been applied only to the calculation of surface pressures and resultant forces.
This study is undertaken to investigate the applicability of these methods to
the flow in the layer between the shock and the body (i.e., shock layer).

A secondary purpose of this study is to present the theoretical results
from the linearized characteristics method for the flow region near the aft
underside of the X-15 fuselage where an experimental scramjet engine is to be
mounted. Local Mach number, pitot pressure, and flow angle are presented at
angles of attack of -39, OO, 59, and 10° and free-stream Mach numbers of L,

6, and 8.

SYMBOLS
a speed of sound
Cp pressure coefficient, ———
Yoo

h enthalpy
H total enthalpy
J index for number of degrees of symmetry; j = O for plane flow, and

J = 1 for axisymmetric flow
M Mach number
g pressure
o} dynamic pressure, % pV2
R nose radius
S entropy



u velocity component in x direction

v velocity
W velocity component in circumferential direction (crossflow velocity)
X,r,2 cylindrical coordinates
X,¥,2 rectangular coordinates
s,n,t streamline coordinates (see fig. 1)
E,K,% unit vectors, streamline coordinates
a angle of attack
B N2 -1
Y specific heat ratio
€ transformed flow angle (see eq. (20))
n distance normal from the body surface
e flow angle measured from x axis in meridional plane
13 right-running characteristic coordinate
P density
P crossflow angle
0 azimuthal coordinate, cylindrical coordinate system
v stream function
Subscripts
B body conditions
m coordinates fixed with the meridional plane (fig. 1)
t total
co free stream
o] zero-order variable from solution of axisymmetric flow
1 first-order perturbation variable (see eq. (6))



THEORY

To illustrate the nature of the approximate methods used in this report
it is pertinent to consider the inviscid gas dynamic equations for general
three-dimensional flow. These equations are given below, in the form derived
in reference 6, in terms of streamline coordinates s,n,t as independent
variables (see fig. 1). The dependent variables in the momentum equations
are the pressure, p, and the flow angles, 6 and ¢; continuity of mass is
automatically satisfied by these equations.

Momentum equations:

Streamwise (8)

B op 06 , 0P ., . cos P sin 8 _
S e T e S Syt S =0 (1)

-

Radial-normal (m)

in2
pV2 Qp_ 89 - j8inZ 9 cos & _ (2)

Cross-normal (%)

1 op . %@_+ j sin @ sin 6 _ (3)

Entropy conservation:

=0 (%)

Energy:

+ %; = H = constant (5)

The foregoing equations must be supplemented by equations of state relating
the variables ©p, p, h, and 5. It is only for the equations of state that
the distinction between real and perfect gas must be made. Equations (1)
(5) therefore are applicable to equilibrium real-gas flow as well as to

perfect gas.
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The Linearized Characteristics Method

Description.- This method, which is more fully described in reference 6,
determines the first derivative or linear change of the flow parameters with
angle of attack, evaluated at zero angle of attack. The circumferential
variation of the dependent variables is approximated by a trigonometric
function. The crossflow parameters which vanish in the plane of symmetry vary
as the sine, and the remaining parameters vary as the cosine. The following
equations, then, express the variation of flow parameters as a function of
angle of attack and circumferential angle.

P =P, t p,® cos 0]

P = Py + pa cos @

S = 8y + Sya cos @ ? (6)
h =hy + h;a cos ¢

¢ = @,a sin @ .

ete. J

The perturbation quantities pi1, pi, etc. determine the slope of their
respective quantities at zero angle of attack, that is, (dp/da)y_o = pi cos .

Substituting the series expansions (6) into equations (1) - (5), and retain-
ing only terms of order a, one obtains the following set of perturbation
equations.

Momentum:

-
s component

+
U

F(pi, 61, P15, hi1) | 1)

-
n component

L+ —1 = G(p1, 91, 91, hi1)
oV, Mg s, (8)
€ component
oP dp sin 6 P
S_J.=_l_2.a_£_j_._r__0q)l+j_£_§ (9)
So \poVy %0 rPoVs

where F and G are complicated expressions involving the perturbation
variables linearly (see ref. 6).



Entropy:

as
981 _ g, ¥o (10)
aso dno
Energy:
hy + VoVy = O (11)

It is seen that these perturbation equations retain the fundamental three-
dimensional nature of the flow over a body at angle of attack. The cross-
normal () component of momentum is coupled with the other equations and
describes the variation of crossflow angle ¢ along the streamline s .

Second-order terms.- The perturbation equations neglect terms of order
(¢2) and, therefore, apply only when the flow quantity variafions are nearly
linear with angle of attack. For some flows there will be limited regilons
in which the second-order terms are not negligible even for small angles of
attack; the following sections will attempt to show, by comparison with data,
where such regions may be encountered.

One cannot, in general, evaluate the relative magnitude of first- and
second-order terms except by a more exact solution. However, it is possible
to include some second-order terms in the calculation of pitot pressure and
Mach number. This is accomplished by including the crossflow veloclty w
in the following way:

Ve = (Vg + aVy cos 0)% + (awy sin 0)Z (12)

where
W1 = VOCPl

The velocity given by equation (12) and the linearized pressure and
density

i

p = p, + apy cos o) (13)

I

P =p, + apL cos @ (1)
were used to calculate pitot pressure. Jump conditions across a normal shock
and the subsequent isentropic compression are then computed with the aid of
equilibrium real gas tables. Thus, to the extent of including velocity from
equation (12), certain second-order effects are included in the pitot pressure.

Mach number can also be calculated with the aid of equations (12), (13),
and (14), and with the speed of sound obtained from real gas tables. For a
perfect gas, however, explicit dependence on pressure and density can be
eliminated by the equation

a2 = vy % = (y - 1)h (perfect gas) (15)



Substituting (15) into the general form of the energy equation (5), one
obtains the following expression for Mach number as a function of velocity.

ME = 2/(z-1) (perfect gas) (16)
oH/VZ -1

Thus, if V2 from equation (12) is used, the second-order (a®) terms are
partially included. Equation (16) was used in calculating the Mach number
distributions to be presented in a later section of the report.

Entropy perturbations.- In the course of this study it was found that
certain quantities, derived from the entropy, were subject to sizable numer-
ical errors as the calculations were extended far downstream on relatively
slender bodies. To eliminate this source of error, it was found necessary to
revise the numerical algorithm used in reference 6 for calculating the entropy
perturbation (eq. (10)). While the original scheme provided exact results on
the body, it did not adequately account for the discontinuous nature of the
entropy layer for inviscid hypersonic flow. A new method for calculating the
entropy perturbation was therefore developed and is described in the appendix.
The new method makes use of the stream function in a manner similar to that
described in reference 8 and permits the flow perturbations outside the
entropy layer to be determined accurately. However, the thin layer near the
body surface, which is commonly called the entropy layer, must be recognized
as a region where the present linearized perturbation theory does not apply.
This restriction becomes academic in many instances, since the viscous bound-
ary layer tends to engulf the entropy layer.

Equivalent Body Method

One approach employed to obtain surface pressures of simple bodies at
angle of attack has been to apply the method of characteristics to an equiv-
alent shaped axisymmetric body at zero angle of attack which has one surface

Equivalent body at zero
incidence

Windward plane Sketch ( a) Leeward plane




contour coincident with the inclined body. The pressures along the coincident
contour line (e.g., the windward surface and plane) are then assumed to be the
same as those obtained by the method of characteristics for the equivalent
body at « = O°. (For exemple, see refs. 5 and 9.) In like manner another
equivalent body is used to approximate the flow in the leeward plane.

To determine what effect crossflow has on the applicability of the equiv-
alent body method, the general equations of motion (1) - (5) are examined.

The assumption of an axisymmetric flow is equivalent to setting the

crossflow angle ¢ = 0. Equations (1) and (2) then reduce to
B2 op <59 3 sin 9’> 0
P = 1
o as (17)
1 8 89
= =0 18
o on | ds (19)

These equations are now decoupled from equation (3) which described the cir-
cumferential momentum balance. In the plane of symmetry (& = O,n) the bound-
ary conditions result in setting ¢ = O; therefore, it is seen that only the
term 8@/8t in equation (1) is neglected in applying the equivalent body
method. Thus in order to calculate the correct pressure gradient it is
necessary that

_9 << <59 + 3 8in 0 9> (19)

r

This approximation is similar to that used in reference 10 in deriving the
shock expansion method. However, in shock expansion theory, disturbances
reflected from the shock wave are neglected. These reflected waves are
included in the present equivalent body method.

Away from the plane of symmetry the error of the equivalent body method
is more difficult to assess since ¢ # 0, and the streamlines no longer lie
in meridional planes. However, the method may still have some applicability
provided cos ¢ =~ 1 and sin® © ~ 0. As is done in the linearized character-
istic method, a cosine c1rcumferential pressure variation could then be
assumed . With this assumption equation (3), which was uncoupled in the equiv-
alent body approximation, could then be integrated to give the crossflow
angle ¢@. This modification to the method was not attempted at this time.



RESULTS AND DISCUSSION
Blunted 15° Cone

The two methods described above were applied to a spherically blunted
150 cone for which there are previously reported wind tunnel results (ref. 5).
In figure 2, pitot pressure data for two body stations at M, = 10.6 are
compared with both the equivalent body method and the linearized method of
characteristics. A modification to the linear method also shown is discussed
later.

In figure 2 the equivalent body method shows agreement at o = 59 to
the same degree as exhibited by the method of characteristics at o = o°.*
The disagreement between data and the method of characteristics at o = 0° and
x/R = 16.67 (fig. 2(b)) is considered minor. Thus, for the prediction of
pitot pressure in the shock layer of blunt-nosed bodies in the plane of
symmetry the equivalent body method may be expected to yield reasonable
results.

The linearized method of characteristics does not agree with the data at
small values of x/R where nose bluntness effects predominate (see fig. 2).
The disagreement may be attributed to two separate phenomena, one dominant in
the unperturbed nose region (see sketch (b)), and one applicable in the

Perturbed

Pitot probe region

Unperturbed dego
region a =
a>0°

Sketch (b)

1The linearized method of characteristics is equivalent to the basic
method of characteristics at zero angle of attack, since the pi term in
equation (6) disappears when a becomes zero.




perturbed region. Near the nose two perturbations are calculated: First,
perturbation parameters are calculated at points in the flow fixed with the
wind axis (point 1, sketch (b)). Second, the wind-axis perturbations are
then transformed to body axes (point 2) by means of a linearized coordinate
rotation.

Near the spherical nose, wind-axis perturbations are zero. Thus much of
the flow 1s not affected by a change in angle of attack. In this region, only
the linearized rotation contributes to the theory.

It is not necessary to assume that the coordinate rotation is small,
since the wind axis perturbations can be calculated at the exact coordinate
location, that is, at point 2 in sketch (b). The theory will then properly
give the axisymmetric zero angle-of-attack result in the unperturbed region
near the spherical nose, and will also give a better approximation in the
shaded region Just downstream from the nose. The results of this calculation
are shown in figure 2(a) as the modified linear characteristics method.
Agreement with experiment is significantly improved by this modification.
Farther downstream this modification, cannot be used, however, because the
relatively large translation of the body in comparison with the shock-layer
thickness places the body outside the original shock layer.

At the downstream station (x/R = 16.67, fig. 2(b)) the poor agreement
between experiment and the linearized characteristics theory is attributed to
the large entropy gradients produced by the blunt nose, which make the varia-
tions of pitot pressure highly nonlinear with angle of attack. Evidence of
this may be seen in figure 3 which shows that on the compression or windward
side, the experimental data exhibit a thinning or squeezing down of the
entropy layer. It can be seen that at a given location in the shock layer the
variation of pitot pressure with angle of attack may be extremely nonlinear.
The linearized characteristics method cannot be expected to yield accurate

results in these regions.

Ogive Cylinder

The linearized characteristics method describes a consistent first-order
circumferential variation of all flow parameters including crossflow. This
theory was compared with the data obtained from the wind-tunnel tests of an
ogive cylinder of fineness ratio 8.5 at M = 3.5 reported in reference 11
(see fig. 4). Figures 5 to 7 show these comparisons of the circumferential
distribution of pitot pressure, Mach number, and a transformed flow angle
(see eq. (20)) at angles of attack of 5° and 10° at one longitudinal body
station (x/r = 15) and three radial locations (n/r = 0.39, 0.59, 0.79), all
relatively close to the body.Z

ZCommunicéfioﬁ”%ifh the‘aﬁfhor of reféfehée 11 éonfiraéd a typogféphical
error which has been corrected in the Mach number data shown in figure 6(b).
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The variations in the pitot pressure data at o = 10° suggest a cosine
dependency (fig. 5). Although the original linear theory of reference 6
assumed a cosine dependency, the present modification by including the cross-
flow velocity to obtain higher order terms, no longer has a cosine dependency
(see eq. (12)). The crossflow velocity depends on a sine relationship, which,
added to the other two velocity components, changes the circumferential
dependency and causes a slight hump in the theoretical curves (see fig. 5).

Further insight into the theoretical circumferential distribution may be
noted from figure 8, which shows the variation, normal to the surface, of
pitot pressure, Mach number, and flow angle 6 for various circumferential
positions. It may be seen that the theoretical pitot pressures are relatively
independent of circumferential position in the region near the body where the
data were taken (n/r = 0.39, 0.59, 0.79). In this region the linear angle-of-
attack perturbation is very small. For n/r greater than about 1.6, however,
the linear perturbations are larger, and the circumferential distribution is
more nearly a cosine. The circumferential variation in Mach number shows
crossovers similar to the pitot pressure but less severe.

Figure 8 shows the flow angle has a strong circumferential variation even
near the body. Because of the strong dependence on crossflow angle ¢ (see
eq. (20)), the transformed flow angle has a circumferential variation which is
nearly sinusoidal.

It should be noted that in figures 5 and 6 the 10° data on the leeward
side (& =~ 20°-40° on the figures) suggest a separated region associated with
the shedding of vortices as described in reference 12. Where this viscous
phenomenon is encountered, of course, correlation with inviscid theory is not
expected.

It was necessary in comparing the data from reference 11 with the linear
characteristics theory to make the flow angles compatible. The flow angle
used in the data actually includes a component of crossflow angle as used in
the convention of reference 7 and adopted herein. The theoretical results
were transformed to be compatible with the experimental results by the
equation

cos € = cos 6 tos @ (20)
where € 1s the flow angle defined in reference 11, & 1is the flow angle from
reference 6,and ¢ 1is the crossflow angle of reference 6. It may be noted

that by the definition adopted in reference 11, the transformed flow angle
€ 1s always positive.

X-15 Airplane
One objective of this study was to obtain information about the flow
field on the aft underside (compression surface ¢ = 180°) of the X-15
airplane (fig. 9) for use in future airbreathing propulsion experiments.

Pitot pressures from wind tunnel model tests (refs. 13 and 14) and from both
the linearized characteristics method and the equivalent body method are

11



compared in figure 10. It may be noted that the equivalent body method (shown
only for o = 10°) does not show the close agreement with data that the linear-
ized method does for this slender body shape (fineness ratio =~ 10.5). The
linearized characteristics method also gives reasonable values for the flow

angle (fig. 11).3

For the calculations, the X-15 shape was approximsted by an ogive
cylinder with a blunt nose. It is obvious from sketch (c) that this is a
great simplification since the asymmetries due to wings, tail, cockpit, and
other bulges are neglected. The protuberances neglected were felt to have
the least effect in the region studied (¢ = 180° compression surface). There-
fore, the approximation used for body shape was felt to cause only minor
discrepancies.

Neglected

Region of flow
approximated by

symmetric body

Sketch (c)

CALCULATED X-15 FLOW FIELD USING LINEARTIZED CHARACTERISTICS THEORY

As part of the present study a more complete investigation was made of
the X-15 aft underside region (in the plane of symmetry, & = 180°) using the
linearized characteristics theory. Figure 12 indicates the bow shock location
for Mach numbers of 4, 6, and 8 and at three angles of attack. Although the
shock shapes are included for completeness, limited comparisons with experi-
ment have indicated they are not accurate. It is felt that this reflects a
strong sensitivity of shock position to second-order (az) terms which the
present theory neglects. The surface static pressure for three Mach numbers
(Mo = 4, 6, 8 at angles of attack of 0°, 50, 10°) is given in figure 13. Note
the overexpansion region (at x/R = 70) at the higher Mach number (M, = 8.0).
Figures 14 and 15 show predictions of the pitot pressure profiles at two body
stations (x/R = 64.0 and 145.0). Station 64.0 represents the juncture of the
ogive and cylinder and station 145.0 is a possible location for the propulsion
package. For the three Mach numbers of 4, 6, and 8 at four angles of attack,

SCommunication with Flight Research Center personnel concerning the
wind tunnel flow angle data (fig. 11) indicated that close to the body, a
disturbance due to either a local shock or probe interference effects could
cause the variations shown between theory and data.

12



it is to be noted that as the Mach number is increased, the angle-of-attack
effects are more pronounced. The theoretical bow shock position is noted
on the curves.

Local Mach number profiles for stations 64.0 and 145.0 are shown in
figures 16 and 17 for the previously considered free-stream Mach numbers and
angles of attack. Flow-angle profiles at stations 64.0 and 145.0 are shown in
figures 18 and 19 for the same variables in Mach number and angle of attack as
shown on the previous figures. Whereas the gradients in flow angle at
station 64.0 (fig. 18) appear rather strong near the surface, this effect
again washes out further downstream as shown in figure 19.

CONCLUDING REMARKS

Two simplified methods for predicting the flow field about bodies of
revolution at angle of attack have been compared with limited experimental
data. Using experimental data from a spherically blunted 15° cone, an ogive
cylinder, and the X-15 as & basis for evaluation, it was found that each
theory studied was applicable to certain regions but neither theory was
superior in all cases. The linear characteristics theory was found to be
useful for predicting the flow fields about bodies of higher fineness ratio,
such as the ogive cylinder and the X-15, at small angles of attack. Of
particular interest was its ability to provide circumferential variations of
certain flow quantities, especially flow angle, for bodies at angle of attack.
Pressures were not predicted as well as Mach number and flow angles in the
case studied.

In regions dominated by bluntness effects the linearized characteristics
method agreed poorly with experiment. The nose bluntness strongly influenced
the flow at least 16 nose radii downstream for the 15° sphere cone at a Mach
number of 10.6. However, in the region of flow, less than about 4 nose radii
downstream, modifications to the linearized characteristics method were shown
to improve the agreement with experiment. The equivalent body method agreed
well with experiment in these bluntness dominated regions but was restricted
in the present report to the plane of flow symmetry.

The linear characteristics theory was employed to investigéte the aft
flow field of the X-15 airplane. The purpose was to provide flow guantities
in & region where a scramjet inlet engine might be mounted.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Jan. 24, 1967
126-15-03-01-00-21

13



APPENDIX
NUMERICAL INTEGRATION OF THE ENTROPY PERTURBATION
The present section describes a finite difference scheme developed for

integrating equation (10). The differential equation for the entropy
perturbation

oS ds
— - -9, —2 (A1)
86 dng

describes the variation of entropy along the unperturbed streamlines which
results from the conservation of entropy on the streamlines of the perturbed
flow. It is assumed that 831 1is given on an initial data line between the
body and shock wave, and that the following boundary conditions must be
satisfied on the body.

aSqs

Sp = Stnitial + (X-Rp)cos 65 + r sin 64 EP (A2)
o

The entropy perturbation is specified at the shock wave in terms of free-
stream conditions and certain perturbation parameters, but these conditions
need not be stated at this time (see ref. 6).

Equation (A2) makes use of the condition that the body is a streamline
and Sp = constant; the dependence on dSo/dn, results from the transforma-
tion from body to wind reference axes. This quantity is easily evaluated at
the body; therefore, the results of references 6 and T, which were confined
to the body surface, were correctly and accurately cbtained. (One should
note that the boundary condition was incorrectly stated in references 6 and
T because of a typographical error.) During the present study it became
apparent that the method used to integrate equation (Al) was introducing
sizable errors off the body surface.

Two difficulties arise in integrating equation (Al). First, the entropy
gradient dSo/dno must be evaluated numerically, and this numerical differ-
entiation becomes inaccurate as the entropy layer thins. The second diffi-
culty is more basic to characteristics methods in general. It arises from
the fact that the streamlines do not pass through the mesh points formed by
intersecting Mach lines, and some form of interpolation becomes necessary.
Just as with the first problem, numerical interpolation becomes inaccurate as
the characteristic mesh opens up with respect to the scale of the entropy
layer.

Using the stream function ¥ (i.e., mass Tlow function) in a manner
similar to that described in reference 8 eliminated both of these problems
in the present linearized characteristics program. The values of entropy
So and entropy perturbation S; at each shock point are stored along with
the corresponding value of stream function

¥ = pOOVOOﬁI‘Z (A3)

1L
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These shock values of S5, S;, and ¥, in addition to the values given along
the input data line, form So-¥ and S;-¥Y tables which are retained as the
computation proceeds downstream. Therefore, if the stream function is known
at some point in the flow field, the entropy can be found from these tables
with an accuracy comparable to that of the shock point calculation. The
important difference in the present method is that the stream function can
be determined more accurately than the entropy at downstream points near the
body surface. The stream function is found at a typical mesh point by a
quadratic interpolation in the same way that entropy is found in a standard
characteristics scheme (see refs. 4 and 15). However, interpolating for ¥
is more accurate because the stream function is an increasing function and is
much smoother than the entropy. For the same reasons the entropy gradient
can be determined more accurately if dSy/d¥ is evaluated by numerical
differentiation of the data in the Sg-¥ +able, and the following relation
is used

ds as
dS _ a¥ Q= pVr —2 (AL)
dn,  dng a¥ av

Since B8y 1s constant on streamlines V¥ = constent, the values in the
So-¥ table are determined by the shock conditions. However, the entropy
perturbation depends also on a streamline dimension through equation (Al);
that is, S; = £(¥, so). Therefore, as each new characteristic line is
computed, the values of S; in the S3;-¥ +table must be changed in accordance
with equation (Al).

The procedure used to perform this calculation is described briefly with
the help of sketch (d4).

Sketch (d)

15



It is assumed that the characteristic mesh for zero angle of attack is known,
and it is necessary to calculate the change in S; in going from line AB
to CD in the sketch. The distance along streamlines, Aso, is calculated
between these lines (shown as EF for a typical point) for all the mesh
points along AB. With the known stream function on this line, one has

61 Nsg = F(¥)

on line AB. This quantity is then calculated, by means of quadratic curve
fits, at those values of ¥ for which Si; 1is stored. The entropy gradient
is evaluated in a similar way with the help of equation (AL) and the So-¥
table. New values of S; are then computed by means of equation (Al). These
are the values of entropy perturbation that apply on the characteristic line
DC. In this manner the entropy perturbation is integrated on a scale that is
much finer than the basic characteristic mesh.

In figure 20 the results of this method are compared to the original
scheme used in reference 6 which was based only on characteristic mesh points.
The example shown is a sphere ogive cylinder for a free-stream Mach number of
10. The entropy perturbation is plotted along several right running
characteristic rays; the distance is normalized to be & = 0 on the shock and
¢ = 1 on the body. It is seen that the two methods give substantially the
same results up to the 60th ray (XB/R = 8.97), but large differences start to
show up at the 80th ray. Near the end of the body, the results of the
standard interpolation scheme are very irregular and differ from the results
of the new method over most of the shock layer. Along the last ray, the new
method gives a large variation of S; in a layer near the body, and a
relatively constant value in the remaining 80 percent of the shock layer.

This is consistent with the physics of the flow which require (by continuity
of mass) that the large entropy variations caused by the blunt nose must be
confined to a layer near the body.

16
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